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In this paper we formulate the stability and the performance problem of a σ−
modification based adaptive controller in the presence of an unmatched uncertainty.

The formulation involves casting the error dynamics of an adaptive control system

into a Linear Parameter Varying form that was initiated in the authors’ previous

work. The analysis framework takes the viewpoint that nonlinear systems, in par-

ticular some classes of adaptive controllers, can be parameterized by a set of linear

systems, and linear matrix inequaility tools can be utilized for the analysis of the

robustness of adaptive controllers to a class of unmatched uncertainties that violate

standard assumptions employed in adaptive control.

I. Introduction

In this paper, we address the application of a Linear Matrix Inequality (LMI)-based tool for
analyzing the stability characteristics and the performance degradation of an adaptive flight control
system in the presence of unmatched uncertainties. Standard adaptive control methods1–6 employ
time-varying parameters that do not fit the traditional stability and robustness validation process
for flight control systems, which is mandatory for flight certification. The incorporation of time-
varying adaptation laws fundamentally changes the characterization of stability from exponential
stability to weaker assurances such of either asymptotic stability or uniform ultimate boundedness
(UUBness) of the tracking errors,3 which has been a fundamental obstacle in ensuring robustness
of adaptive control. The traditional validation procedure is based on linearized dynamics around a
trim point, which has been justified by Lyapunov’s first theorem, and required a closed-loop system
to be exponentially stable. In adaptive control, this can only be attained under highly restrictive
persistency of excitation condition. Consequently, it can not be claimed that adaptive control is
robust to unmatched uncertainties, unmodeled dynamics, external disturbances.7

Employing modification terms in adaptive laws, such as σ−modification,8 e−modification,1 and
projection,9 weakens the notion of stability from asymptotic convergence to UUBness of tracking
errors.10 This notion is useful for neural network (NN)-based adaptive algorithms10–12 because the
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inherent network approximation error necessitates the employment of modifications for proof of
boundedness for closed-loop signals. In the case of a NN-based adaptive algorithm, this has been
the price that one has to pay in order to eliminate the requirement of having a perfectly known
regression vector. Nevertheless, even though incorporating modification terms in adaptive laws has
shown to be robust to a limited class of modeling errors that violates the standard assumptions
in adaptive control,3 a general framework to quantitatively analyze the performance of adaptive
control systems with respect to unstructured uncertainties and unmodeled dynamics has remained
a very challenging problem.

In Ref.s 13,14 we have initiated an effort that addresses quantifying nominal system performance
and stability margins of adaptive flight control using an LMI framework. This paper is an extension
that includes analysis of an adaptive control system in the presence of unmatched uncertainties. In
other words, following Ref.s 13,14, the combined error dynamics, composed of the tracking error and
the weight estimate error, are cast as an exponentially stable system under bounded perturbation
by employing σ−modification as an essential ingredient. The exponentially perturbed system is
then viewed as a linear-parameter varying (LPV) system, and LMI analysis tools are applied for
the analysis of the performance and the robustness in the presence of unmatched uncertainties.

The paper is organized as follows. In Section II, we introduce an affine parametrization and for-
mulate the analysis problems. In Section III, we show that qunatifying the L2 gain of an unmatched
uncertainty essentially falls into a robust stability problem. In Section IV, the performance analy-
sis for the tracking error is carried by restricting the unmatched uncertainty to a static mapping,
which reveals that the formulation falls into robust a performance problem. Simulation results are
presented in Section V, which is followed by concluding remarks in Section VI.

II. Problem Formulation

Consider a single-input single-output system described by:

ẋ(t) =Ax(t) + b(u(t) + W⊤φ(x(t))) + Bu∆u(z(t)),

z(t) =Cux(t),

y(t) =c⊤x(t),

(1)

where x(t) ∈ R
n is the system state vector, u(t) ∈ R is the input, y(t) ∈ R is the output, W ∈ R

N

is a uncertain parameter vector, φ(x(t)) ∈ R
N is a known set of smooth basis functions, ∆u(z(t)) is

an unmatched uncertainty, and z(t) is the sub-state that contribute to the unmatched uncertainty,
and the system matrices A, b, c⊤, Bu, Cu are known. A nominal linear controller:

unom(t) = −K⊤
x x(t) + Krr(t), (2)

is assumed to be designed such that the resulting closed-loop system with the known part of the
system in (1), without unmatched uncertainty, satisfies design specifications. Hence we can define
a reference model for the desired behavior using

ẋm(t) =Amxm(t) + bmr(t)

ym(t) =c⊤xm(t),
(3)

where Am = A − bK⊤
x is Hurwitz, bm = bKr , and r(t) is a bounded reference command.

Let
u(t) = unom(t) − uad(t), (4)

where uad(t) is an adaptive signal introduced to approximately cancel the uncertainty W⊤φ(x(t)):

uad(t) = Ŵ (t)⊤φ(x(t)), (5)
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whose estimate Ŵ (t) for the ideal weight W in (1) is updated using:

˙̂
W (t) = −γφ(x(t))e(t)⊤Pb − σŴ (t), (6)

where γ > 0 ∈ R is the adaptation gain, σ is the σ−modification gain, and P > 0 is obtained by
solving the following Lyapunov function with a selected Q > 0:

A⊤
mP + PAm + Q = 0. (7)

Stability results in adaptive control are cast in terms of the tracking error:

e(t) = xm(t) − x(t), (8)

whose dynamics are described by:

ė(t) = Ame(t) + bW̃ (t)⊤φ(x(t)) − Bu∆u(z(t)), (9)

where W̃ (t) = Ŵ (t) − W is the weight estimation error. From (6), the weight estimation error

can be written in terms of W̃ (t) as

˙̃
W (t) = −γφ(x(t))e(t)⊤Pb − σW̃ (t) − σW , (10)

Let
ζ(t) = [e(t)⊤,W̃ (t)⊤]⊤. (11)

Then the error dynamics composed of the tracking error and the weight estimation error are de-
scribed by:

ζ̇(t) =

[
Am bφ(x(t))⊤

−γφ(x(t))b⊤P −σIN

]

︸ ︷︷ ︸
Ā(ρ(t))

ζ(t) +

[
−Bu

0

]

︸ ︷︷ ︸
B̄u

∆u(z(t)) +

[
0

−IN

]

︸ ︷︷ ︸
B̄w

σW

e(t) =
[

In 0n×N

]

︸ ︷︷ ︸
C̄e

ζ(t),

(12)

where ρ(t) = φ(x(t)). Following Ref. [13], the matrix Ā(ρ) is affinely parametrized as follows. Let
Ωx be a compact domain of interest such that x(t) ∈ Ωx for all t ≥ 0. Then, the basis function
φ(x) = [φ1(x), . . . , φN (x)]⊤ is known and hence we can calculate the interval to which each element
of the basis function belongs, i.e., ρj = φj(x) ∈ [min(φj(x)),max(φj(x))] = [φ

j
, φj ]. This leads to:

Ā(ρ) = A0 +

N∑

j=1

ρjAj , (13)

where A0 =

[
Am 0n×N

0N×n −σIN

]
, Aj ∈ R

(n+N)×(n+N) is a matrix such that Aj(1 : n, k) = b, Aj(k, 1 :

n) = −γb⊤P if k = j, and Aj(k, l) = 0 otherwise (k 6= j nor l 6= j). The notation i : n is used to
represent indices from i to n. Note that the affine parameter belongs to the set P that is given by
ρ ∈ P := co(P0) where

P0 := {ρ = (φ1, . . . , φN ) : φj ∈ {φ
j
, φj}, j = 1, . . . , N}. (14)

Following the analysis framework in Ref. [14], we address the following problems.
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1. What is the size of an unmatched uncertainty that can be tolerated by the control law in (4)
in the L2 input-output stability setting?

2. How much does the performance of the closed loop system degrade given a certain class of
static unmatched uncertainties?

In the problem 1, the size is specified by L2 gain, and therefore a dynamic mapping is allowed.
Since it is very difficult to investigate the performance degradation due to dynamic unmatched
uncertainties, in the problem 2 we restrict unmatched uncertainties to the class of static mapping
whose slopes are upper bounded by a known constant.

III. Analysis for a Tolerable Unmatched Uncertainty

The size of the unmatched uncertainty ∆u that does not destroy the stability of the dynamics in
(12) is specified in the L2 input output stability setting.15 In order to derive a pull-out uncertainty
interconnection, we note that z can be, using (8), rewritten as

z(t) = C̄uζ(t) + z0(t), (15)

where C̄u = [−Cu, 0], z0(t) = Cuxm(t), and z0 ∈ L∞. Further, by denoting that σW = w0 ∈ L∞,
wu = ∆u(z), the error dynamics in (12) can be rewritten as:

ζ̇ = Ā(ρ)ζ + B̄uwu + B̄ww0

z = z1 + z0, where z1 = C̄uζ

wu = ∆u(z).

(16)

By introducing a time-varying system Σ ∼

[
Ā(ρ) B̄u B̄w

C̄u 0

]
, whose input and output are

(wu,w0) and z, the system in (16) can be depicted by the pull-out interconnection shown in
Figure 1. As in Ref. [14], we classify the tolerable size of ∆u by its L2 gain.

+

+

wu

z1

w0

zo
z

Σ

∆u

Figure 1. Interconnection with the pull-out of the unmatched uncertainty
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Proposition 1. Suppose that we solve the following LMI problem:

minimize γs > 0 subject to

X = X⊤ > 0 and
[

Ā(ρ)⊤X + XĀ(ρ) + C̄⊤
u C̄u XB̄u

B̄⊤
u X −γ2

sI

]
< 0, ∀ρ ∈ P0.

(17)

Then, the closed loop system in (16), depicted in Figure 1, remains stable for all the uncertain
mapping ∆u whose L2 gain is less than 1/γs.

The proof of Proposition 1 directly follows from the small-gain theorem16 and the fact that
A(ρ) is affinely parameterized with respect to ρ. Notice that a class of dynamic mapping is allowed
as an unmatched uncertainty unlike standard analysis in nonlinear robust control theory.17 This
is because of the fact that the stability problem is pursued using an input-output framework while
the standard results are based on application of direct Lyapunov theorem.

IV. Analysis for the Performance Degradation due to a Static Unmatched

Uncertainty

Whereas the stability problem in Section III is only concerned with whether all the signals in
the closed loop system in (12) remain bounded in the presence of an unmatched uncertainty, the
analysis of the degradation in performance due to an unmatched uncertainty requires quantifying
the size of disturbance resulting from the unmatched uncertainty. Since specifying the external
disturbance of an uncertain dynamic mapping is not straightforward, in this section we restrict our
attention to a static unmatched uncertainty whose slope is bounded by a known constant. In other
words, we introduce the following assumption.

Assumption 1. The unmatched uncertainty ∆u is a static mapping and ‖∆′
u(Cux)‖ ≤ γu for

∀x ∈ Ωx, where ∆′
u := d∆u

dz
and γu > 0 is a known constant.

Let
∆̄u(ζ) := ∆u(z) − ∆u(zm), (18)

where zm = Cuxm. Then by the mean-value theorem18 together with Assumption 1, we have

∥∥∆̄u(ζ)
∥∥ ≤

∥∥∆′
u(z̄)(z − zm)

∥∥ ≤ γu ‖Cue‖ ,

where z̄ = θz + (1 − θ)zm = Cux̄, where x̄ = (θx + (1 − θ)xm) ∈ Ωx for a 0 ≤ θ ≤ 1. Using the
notation ∆̄u, the closed-loop system in (12) can be rewritten as:

ζ̇ = Ā(ρ)ζ + B̄u∆̄u(ηu) + B̄u∆u(Cuxm) + B̄wσW

ηu = Cue = C̄uζ,

ηp = e = C̄eζ.

(19)

Notice that the unmatched uncertainty is now decomposed as the part, ∆̄u(ηu) with ∆̄u(0) = 0,
that contributes to the stability characteristic of the closed loop system and the part ∆u(Cuxm)

that act as an external disturbance . Due to Assumption 1, ∆̄
⊤
u ∆̄u ≤ γ2

uη⊤
u ηu for ∀t ≥ 0. Moreover,

by introducing
B̄p = [B̄u, B̄w], wp = [∆u(Cuxm)⊤, σW⊤]⊤,wu = ∆̄u(ηu), (20)
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the system in (19) is further written as:

ζ̇ = Ā(ρ)ζ + B̄uwu + B̄pwp

ηu = C̄uζ, wu = ∆̄u(ηu),

ηp = C̄eζ.

(21)

With the time-varying system Σ ∼




Ā(ρ) B̄u B̄p

C̄u 0 0

C̄e 0 0


 whose input and output are (wu,wp) and

(ηu,ηp), respectively, the system in (21) is depicted by the diagram in Figure 2. Except that Σ

wu

ηu

wp ηp
Σ

∆u

Figure 2. Robust Performance Set-up

is a time-varying system, Figure 2 essentially lays out the diagram of robust performance.19 As a
result, a set of LMI tools can be used for performance analysis.

The following convergence analysis is analogous to that in Ref.[13] with the difference being the
presence of the unmatched uncertainty ∆u.

Proposition 2. Suppose that there exists X = X⊤ > 0, µ > 0 such that
[

Ā(ρ)⊤X + XĀ(ρ) + C̄⊤
u C̄u + µX XB̄u

B̄⊤
u X −γ−2

u I

]
< 0, ∀ρ ∈ P0. (22)

Then ζ(t) in (21) is exponentially bounded by:

‖ζ(t)‖ ≤
√

κ(X) ‖ζ(0)‖ e−
µ

2
t + 2

√
κ(X) {‖Bu‖ ‖∆u(Cuxm)‖∞ + σ ‖W ‖} (1 − e−

µ

2
t), (23)

where κ(X) = λmax(X)/λmin(X), ‖∆u(Cuxm)‖∞ = supτ∈[0,t] ‖∆u(Cuxm(τ))‖.

Proof. Let ζ(t) = Φ(t, 0)ζ(0) be a solution to the following system:

ζ̇ = Ā(ρ)ζ + B̄u∆̄u(C̄uζ), (24)
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where Φ(t, 0) is the transition matrix. Consider V (ζ) = ζ⊤Xζ. Multiplying [∆̄
⊤
u , ζ⊤]⊤ on both

sides to Eq.(22) leads to V̇ ≤ −µV, ∀ρ ∈ P0 because ∆̄
⊤
u ∆̄u ≤ γ2

uη⊤
u ηu. Due to affine parametriza-

tion of ρ, we have V (t) ≤ V (0)e−µt, ∀ρ ∈ P. From the fact that λmin(X) ‖ζ‖2 ≤ V (ζ) ≤
λmax(X) ‖ζ‖2 it follows that ‖ζ(t)‖2 ≤ κ(X)e−µt ‖ζ(0)‖2. Since ζ(0) is arbitrary,

‖Φ(t, 0)‖ ≤
√

κ(X)e−
µ

2
t. (25)

From this, the solution for the system in (21) is derived as ζ(t) = Φ(t, 0)ζ(0)+
∫ t

0 Φ(t, s)B̄pwp(t)ds.
Considering that

∥∥B̄pwp(s)
∥∥ ≤ ‖Bu‖ ‖∆u(Cuxm)‖∞ + σ ‖W‖ , ∀s ∈ [0, t] leads to (23).

Remark 1. The feasibility of LMI in (22)) requires that γu ≤ 1/γs. The guaranteed convergence
rate can be found by maximizing µ. In case of the analysis for the nominal convergence rate,
the convergence rate obtained by LMI analysis was guaranteed to be less conservative than the
standard result in the nominal convergence result.13 Proposition 2 shows that the LMI analysis for
the guaranteed convergence rate can be performed if an upper bound of the slope is known for the
unmatched uncertainty. There does not exist any result in standard adaptive control that obtain a
guaranteed convergence rate in the presence of an unmatched uncertainty in the literature.

In adaptive control, a primary importance is put on the behavior of the tracking error e(t).
Following the same path as that in Ref.[13], the following proposition shows how the tracking error
can be analyzed in the presence of the unmatched uncertainty.

Proposition 3. Suppose that there exist X = X⊤ > 0 and µ, β, ν > 0 such that




A(ρ)⊤X + XA(ρ) + µX + C̄⊤
u C̄u XB̄u XB̄p

B̄⊤
u X −γ−2

u I 0

B̄⊤
p X 0 −νI


 < 0,




µX 0 C̄⊤
e

0 (β − ν)I 0

C̄e 0 βI


 > 0, ∀ρ ∈ P0,

(26)

Then the tracking error is upper bounded by:

‖e(t)‖ ≤
√

βµλmax(X) ‖ζ(0)‖ e−
µ

2
t + β {‖∆u(Cuxm)‖∞ + σ ‖W ‖} . (27)

Proof. Consider V (ζ) = ζ⊤Xζ. By multiplying [ζ⊤,∆⊤
u ,wp]

⊤ on both sides of Eq. (26), we have
V̇ + µV − ν ‖wp‖

2
∞

< 0. This leads to:

V (t) ≤ V (0)e−µt + ν ‖wp‖
2
∞

∫ t

0
e−µ(t−s)ds

≤ V (0)e−µt + ν/µ ‖wp‖
2
∞

.

(28)

From the second inequality, we have ‖e(t)‖2 < β[µV (t) + (β − ν) ‖wp‖
2
∞

]. By substituting (28),

we have ‖e(t)‖2 < β[µV (0)e−µt + β ‖wp‖
2
∞

] ≤ βµλmax(X) ‖ζ(0)‖2 e−µt + β2 ‖wp‖
2
∞

. This leads to
(27).

Compared to the nominal LMIs in Ref.[13], Propositions 2 and 3 shows that the performance
degradation due to the unmatched uncertainty occurs from the term γu, which affect the dynamic
characteristic of the closed loop system, as well as the term ‖∆u(Cuxm‖∞, which acts as an
additional disturbance to the error dynamics.
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V. Simulations

Let us consider the roll dynamics described by:

ẋ(t) = Ax(t) + b(u(t) + W⊤φ(x(t))) + bmpcmd(t),

y(t) = c⊤x(t)
(29)

where the state vector x = [pi, v, p, r] is composed of an integrator of the roll rate error, the Y −axis
velocity, the roll rate, and the yaw rate, respectively. The output y(t) represents the roll rate, the
control signal u = δa represents the aileron deflection, and pcmd(t) represents the roll rate reference
command. The system matrices in (29) are obtained by linearizing the Generic Transportation
Model (GTM) model at the angle of attack 2o trim point and are given by:

A =




0 0 −1 0

0 −0.8532 6.5778 −186.3175

0 −0.8720 −8.7068 1.9306

0 0.3365 −0.2895 −2.0953


 , b =




0

−0.0665

−1.7828

−0.0462




⊤

, c =




0

0

1

0




⊤

, bm =




1

0

0

0




⊤

.

(30)
The nominal controller in (2) is designed as a linear quadratic regulator (LQR) whose feedback and
feedforward gains are:

K⊤
x =

[
100.0000 0.3868 −6.5963 −5.3349

]
, Kr = 0. (31)

The reference model in (3) is realized as a nominal closed loop system in which the known part
of the linear system in (29) is regulated by the LQR controller. The closed-loop system has gain
margin (GM) of infinity, the phase margin (PM) of 75.9873 o at the crossover frequency of 14.7172
rad/s. An analysis for a NN-based adaptive control that augments the LQR controller is presented
in Ref. 14.

In this paper, the unmatched uncertainty ∆u is derived from a linearized dynamics for a dam-
aged GTM model in which the rudder is off. Moreover, since the absence of the rudder has little
effect on the effectiveness of the aileron, it is assumed that the same b is maintained in the absence
of the rudder. In other words, the main effect of the rudder damage is assumed to occur in the
system A matrix in (30). Linearizing the damaged GTM dynamics at the given trim condition
leads to the following system matrix:

Ad =




0 0 −1 0

0 −0.5235 6.659 −125.7

0 −0.5167 −6.414 0.587

0 0.1928 −0.2571 −0.9719


 . (32)

The resulting simulation model employed for our study is described by:

ẋ(t) = (A + α∆A)x(t) + bu(t) + bmpcmd(t),

y(t) = c⊤x(t),
(33)

where α is introduced as a scale factor for the unmatched uncertainty, and

∆A =




0 0 0 0

0 0.3117 0.0812 60.6175

0 0.3553 2.2928 −1.3436

0 −0.1437 0.0324 1.0874


 = Bl

u∆A3Cu, (34)
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where
Bl

u = diag{0, 1, 1, 1},∆A3 = ∆A(2 : 4, 2 : 4), Cu = I3. (35)

1. Linear Control Analysis

Applying the nominal linear controller in (31) to the system in (33) leads to the following closed
loop system:

ẋ(t) = Amx(t) + αBl
u∆A3Cux(t) + bmpcmd(t).

The analysis of the stability in the presence of norm bounded uncertainty is a standard problem
in the literature via the bounded real lemma.20 Applying the bounded real lemma to the system

Σ ∼

[
Am Bl

u

Cu 0

]
leads to the allowable L2 gain for α∆A3 to be 1.8178. Since ‖∆A3‖ = 60.6429,

the maximal α for the linear system should be α = 0.0303. Figure 3 shows the roll rate tracking
responses when there is no unmatched uncertainty (α = 0) and when the roll rate response starts
to deviate due to the unmatched uncertainty (α = 1.8). The roll rate command is dotted in red,
and the roll rate response of the system is solid in blue throughout the entire simulation results in
this section. It is immediately clear that the performed analysis is quite conservative because the
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(a) roll rate tracking with α = 0
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(b) Roll rate tracking with α = 1.8

Figure 3. Time responses with the linear controller

analysis assumes that ∆A3 is a norm-bounded time-varying matrix while ∆A3 is actually constant.
In other words, the conservatism largely stems from its black-box assumption on the uncertainty
α∆A3. Note that the same is also true for ensuing analysis for adaptive control because the
analysis for an adaptive control essentially follows that of a norm bounded uncertainty. We focus
on presenting the LMI framework that is applicable to an adaptive controller in this paper and do
not try to perform less conservative LMI analysis. A pursuit for a less conservative LMI approach
that incorporates all the structural information available in a specific system is left as a future
research topic.

2. Adaptive Control Analysis

In case of adaptive control, notice that the uncertainty ∆Ax can be decomposed as a matched one
and an unmatched one via the Gram-Schmidt procedure.21 That is, the system in (33) can also be
written as:

ẋ = Ax + b(u + αW⊤x) + Buα∆A′
3Cux, (36)
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where Bu =

[
01×2

B⊥
3

]
, B⊥

3 ∈ R
3×2 is a matrix such that b⊤3 B⊥

3 = 0 and (B⊥
3 )⊤B⊥

3 > 0,

W = ∆A⊤
3

b⊤3

b⊤3 b3

, ∆A′
3 = ((B⊥

3 )⊤B⊥
3 )−1(B⊥

3 )⊤∆A3, (37)

and b3 = b(2 : 4). According to the system description in (1), this leads to: φ(x) = x, ∆u(z) =
α∆A′

3z, and z = x. The compact domain of interest is set as Ωx = [−0.1, 0.1] × [−0.2, 0.2] ×
[−0.05, 0.05] for (v, p, r).

Tables 1 and 2 show the analysis results when there is no unmatched uncertainty by solving
LMIs in Ref. [13]. Very high values in the convergence rate and the small number β indicates that
the nominal performance is excellent. For example, the roll rate tracking response with γ = 1000
and σ = 0.01 is shown in Figure 4(a).

γ = 0.1 γ = 1 γ = 10 γ = 102 γ = 103

σ = 0.01 0.3932×106 0.5243 ×106 0.4915×106 0.7864 ×106 0.4915 ×106

σ = 0.1 0.4915×106 0.3932×106 0.5243×106 0.3932×106 0.5243×106

σ = 1 0.4588×106 3.1457×106 0.5243×106 0.4915×106 0.4915×106

σ = 10 0.4915×106 0.4588×106 0.4915×106 0.3932×106 3.1457×106

σ = 100 0.4915×106 0.4588×106 0.5079×106 0.3932×106 0.3932×106

Table 1. Maximal convergence rate µ in the nominal analysis

γ = 0.1 γ = 1 γ = 10 γ = 102 γ = 103

σ = 0.01 0.1467×10−3 0.1322×10−3 0.1243×10−3 0.1721×10−3 0.1663×10−3

σ = 0.1 0.1131×10−3 0.1719×10−3 0.1667×10−3 0.1392×10−3 0.1811×10−3

σ = 1 0.1866×10−3 0.1185×10−3 0.0840×10−3 0.1659×10−3 0.1974×10−3

σ = 10 0.1629×10−3 0.1152×10−3 0.1384×10−3 0.1803×10−3 0.2126×10−3

σ = 100 0.2202×10−3 0.1978×10−3 0.2208×10−3 0.1982×10−3 0.1947×10−3

Table 2. UUB parameter β in the nominal analysis

Table 3 shows the allowable L2 gain for the unmatched uncertainty. Overall within the con-
sidered range of the adaptation gain and the σ− modification gain, the allowable L2 gains for the
unmatched uncertainty show little variations. Figure 4(b) shows the responses in roll rate tracking

γ = 0.1 γ = 1 γ = 10 γ = 102 γ = 103

σ = 0.01 0.1277 0.1276 0.1271 0.1259 0.1025

σ = 0.1 0.1277 0.1277 0.1276 0.1271 0.1259

σ = 1 0.1277 0.1277 0.1277 0.1276 0.1271

σ = 10 0.1277 0.1277 0.1277 0.1277 0.1276

σ = 100 0.1277 0.1277 0.1277 0.1277 0.1277

Table 3. Tolerable L2 gain for the unmatched uncertainty

with γ = 1000 and σ = 0.01 when α = 0.13. There is no change in the tracking performance
compared to the roll rate response with α = 0 in Figure 4(a). This implies that the L2 gains
in Table 3 is conservative. As a matter of fact, a noticeable performance degradation starts to
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(a) roll rate tracking with α = 0
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(b) Roll rate tracking with α = 0.13

Figure 4. Roll rate responses of the adaptive controller with γ = 1000 and σ = 0.01.

appear when α is substantially increased. Figure 5(a) shows the roll rate responses when α = 1.0.
This conservatism can in part be attributed to the black-box assumption on α∆A3. Finally, Fig-
ure 5(b) shows the roll rate responses when the unmatched uncertainty ∆A′

3Cux is replaced by
∆A3(t,x) = [v sin(10t − π/3),−p cos(4t), r sin(3t − π)]⊤, which can be tolerated by the adaptive
controller due to Proposition 1. No distinguishable performance degradation is observed in roll rate
tracking.
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(a) roll rate tracking with α = 1.0
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(b) roll rate tracking with α = 0.13 in the presence
of a time-varying uncertainty

Figure 5. Investigation of performance degradation of the adaptive controller with γ = 1000 and

σ = 0.01

Tables 5 and 6 show the parameters associated with analysis of the tracking error. The parame-
ters are obtained by solving LMIs in (26), as the adaptation gain and the σ−modification gain vary.
The slope of the unmatched uncertainty ∆u is assumed to be less than 0.05. Compared to the nom-
inal analysis results in Tables 1 and 2, the estimated performance significantly degrades again due
to the possible reason that the results in Tables 5 and 6 are guaranteed for any time-varying, static
mapping whose slope is bounded by 0.05. In simulations, no significant degradation is observed
with the given value of α = 0.05. The overall analysis indicates that while a theoretically guaran-
tee can be obtained for the size of an unmatched uncertainty and the performance degradation in
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γ = 0.1 γ = 1 γ = 10 γ = 102 γ = 103

σ = 0.01 0.0195 0.0195 0.0195 0.0195 0.0195

σ = 0.1 0.1997 0.1997 0.1997 0.1982 0.1865

σ = 1 0.9995 1.7847 1.7832 1.7739 1.6978

σ = 10 1.7847 1.7847 1.7847 1.7847 1.7827

σ = 102 1.3208 0.9976 1.7847 1.7847 1.7847

Table 4. Convergence rate µ in Proposition 2

case of a known upper bound for the unmatched uncertainty, the accuracy of the estimate heavily
depends on the structure of an uncertainty that is investigated. Therefore, in order to obtain a less
conservative estimate from the LMI analysis, all the structural information should be incorporated
in forming LMIs, which is also true for LMI analysis in linear robust control theory.

γ = 0.1 γ = 1 γ = 10 γ = 102 γ = 103

σ = 0.01 179.1594 173.5520 157.1020 439.5883 992.8467

σ = 0.1 75.1509 75.1630 75.2815 77.0400 107.4489

σ = 1 75.1489 75.1499 75.1597 75.2546 76.3007

σ = 10 75.1488 75.1489 75.1498 75.1595 75.2525

σ = 102 75.1488 75.1488 75.1489 75.1498 75.1594

Table 5. UUB parameter β in Proposition 3

γ = 0.1 γ = 1 γ = 10 γ = 102 γ = 103

σ = 0.01 0.0050 0.0050 0.0150 0.0150 0.0150

σ = 0.1 0.0450 0.0450 0.0450 0.0550 0.0850

σ = 1 0.0450 0.0450 0.0450 0.0450 0.0450

σ = 10 0.0450 0.0450 0.0450 0.0450 0.0450

σ = 102 0.0450 0.0450 0.0450 0.0450 0.0450

Table 6. Corresponding µ in Proposition 3

VI. Conclusions and Future Directions

The framework of LMI-based analysis for adaptive control is extended to a class of systems
with an unmatched uncertainty. The formulation involves recasting the error dynamics composed
of the tracking error and the weight estimation error into a linear parameter varying form as in
the previous approach. We show that the affine parametrization in the previous approach is still
valid for quantifying the L∈ gain of a tolerable unmatched uncertainty and that the resulting LMIs
resemble a robust stability in the literature. Since an analysis for the performance degradation due
to a dynamic unmatched uncertainty is not straightforward, we restrict the performance analysis
to the case of a static unmatched uncertainty whose slope is bounded by a known constant. The
resulting LMIs resemble a robust performance problem in the literature.

Simulations results with a linzerized damaged GTM model indicate that the LMI analysis results
can be quite conservative if an employed assumption is too general for a system at hand as is the case
for LMI analysis in linear robust control theory. A simulation study with a less conservative LMI
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formulation, which incorporates all the available structural information, is left for future research.
A stability margin analysis, which essentially follows the path in the authors’ previous approach, is
also left for future research. It is expected that the unmatched uncertainty introduce an additional
parameter, and due to this parameter, the resulting stability margins depend on the slope of the
unmatched uncertainties as well. This implies that the stability margin of adaptive control systems
depend on both the unknown ideal weight in the matched uncertainty as well as the slope of the
unmatched uncertainty.
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